Speech recognition using deep neural network – recent trends
نویسنده
چکیده
Deep neural networks (DNN) are special forms of learning-based structures composed of multiple hidden layers formed by artificial neurons. These are different to the conventional artificial neural networks (ANN) and are accepted as efficient tools for solving emerging real world problems. Recently, DNNs have become a mainstream speech recognition tool and are fast becoming part of evolving technologies emerging as a viable option to replace all other leading tools so far used. ANNs with deep learning which uses a generative, layer by-layer pre-training method for initialising the weights has provided best solution for acoustic modelling for speech recognition. This paper provides a brief description of the current technology related to speech recognition and its slow adoption of DNN-based approaches. Initially, a historical note on the technology development for speech recognition system is given. The later part explains the DNN-based acoustic modelling for speech recognition and recent technology developments reported and the ones available for actual use.
منابع مشابه
Speech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملبهبود عملکرد سیستم بازشناسی گفتار پیوسته بوسیله ویژگیهای استخراج شده از مانیفولدهای گفتاری در فضای بازسازی شده فاز
The design for new feature extraction methods out of the speech signal and combination of their obtained information is one of the most effective approaches to improve the performance of automatic speech recognition (ASR) system. Recent researches have been shown that the speech signal contains nonlinear and chaotic properties, but the effects of these properties are not used in the continuous ...
متن کامل